

PSI

Lab2

First-principles calculations of electronic properties of materials:
the case study of bulk CaO

Edward Linscott and Miki Bonacci

École Polytechnique Fédérale de Lausanne (THEOS)

Paul Scherrer Institut (PSI)

edward.linscott@psi.ch, miki.bonacci@psi.ch

28 March - 4 April 2025

Outline

1. Introduction to the Quantum ESPRESSO project
2. Description of the input file for the pw.x code
3. Performing the calculation

Outline

1. Introduction to the Quantum ESPRESSO project
2. Description of the input file for the pw.x code
3. Performing the calculation

The Quantum ESPRESSO project

QUANTUM ESPRESSO

home the project download users developers feats events news support us

www.quantum-espresso.org

QUANTUM ESPRESSO

Is an integrated suite of Open-Source computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials.

[READ MORE](#)

The Quantum ESPRESSO project

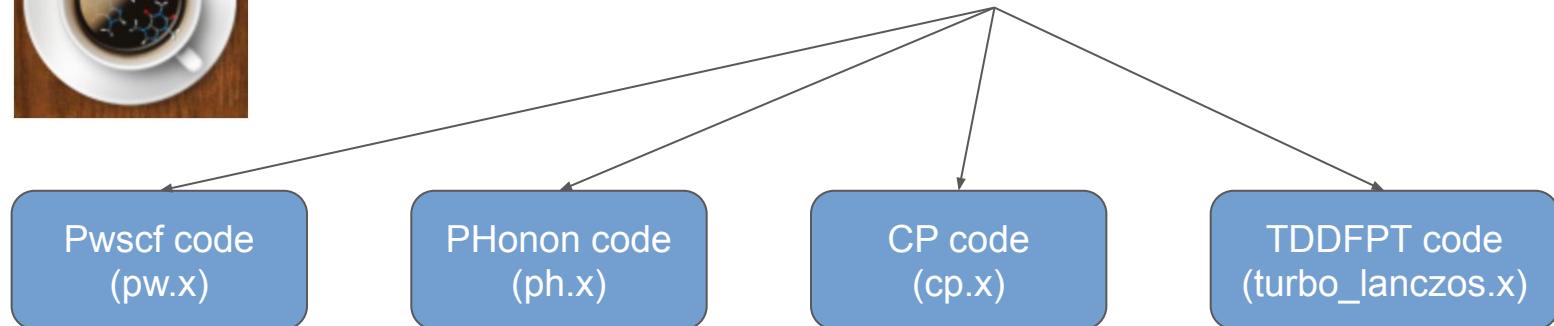
IOP Publishing

Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter **29** (2017) 465901 (30pp)

<https://doi.org/10.1088/1361-648X/aa8f79>

Advanced capabilities for materials modelling with QUANTUM ESPRESSO


P Giannozzi¹ , O Andreussi^{2,9}, T Brumme³, O Bunau⁴, M Buongiorno Nardelli⁵, M Calandra⁴, R Car⁶, C Cavazzoni⁷, D Ceresoli⁸, M Cococcioni⁹, N Colonna⁹, I Carnimeo¹, A Dal Corso^{10,32}, S de Gironcoli^{10,32}, P Delugas¹⁰, R A DiStasio Jr¹¹, A Ferretti¹², A Floris¹³, G Fratesi¹⁴ , G Fugallo¹⁵, R Gebauer¹⁶, U Gerstmann¹⁷, F Giustino¹⁸, T Gorni^{4,10}, J Jia¹¹, M Kawamura¹⁹ , H-T Ko⁶ , A Kokalj²⁰, E Küçükbenli¹⁰, M Lazzeri⁴, M Marsili²¹, N Marzari⁹, F Mauri²², N L Nguyen⁹, H-V Nguyen²³, A Otero-de la Roza²⁴, L Paulatto⁴, S Poncé¹⁸, D Rocca^{25,26}, R Sabatini²⁷, B Santra⁶ , M Schlipf¹⁸, A P Seitsonen^{28,29}, A Smogunov³⁰, I Timrov⁹ , T Thonhauser³¹, P Umari^{21,32}, N Vast³³, X Wu³⁴ and S Baroni¹⁰

The Quantum ESPRESSO project

ESPRESSO: opEn Source Package for Research in Electronic Structure,
Simulation and Optimization

Quantum ESPRESSO

Pwscf code
(pw.x)

PHphon code
(ph.x)

CP code
(cp.x)

TDDFPT code
(turbo_lanczos.x)

Density Functional Theory
(DFT):
ground state properties
(total energy, forces, stress
tensor...)

Density Functional
Perturbation Theory
(DFPT):
lattice vibrations

Car-Parrinello molecular
dynamics

Time-dependent DFPT
spectroscopy

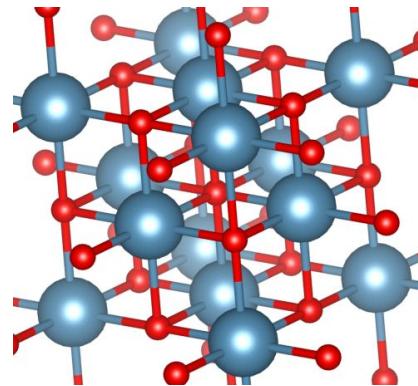
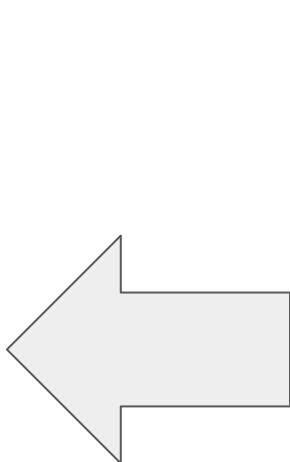
... and there are many other components of this project.

The Quantum ESPRESSO project

Tutorials and lectures:

<https://www.materialscloud.org/learn/sections>

<https://www.quantum-espresso.org/resources/tutorials>

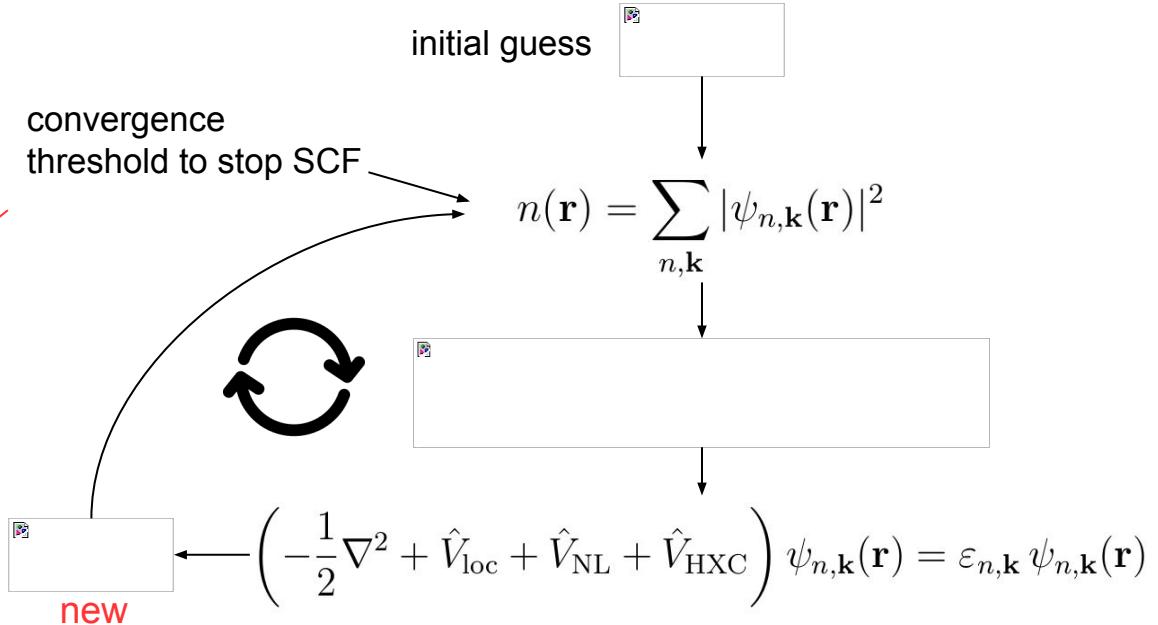


Outline

1. Introduction to the Quantum ESPRESSO project
2. Description of the input file for the pw.x code
3. Performing the calculation

Input file for the pw.x code

In this lab we will study electronic properties of the **bulk** CaO – calcium oxide
The input file for this system looks like this (**CaO_primitive.scf.in**):

```
1  &control
2    calculation = 'scf'
3    restart_mode = 'from_scratch'
4    prefix = 'CaO'
5    tstress = .true.
6    tprnfor = .true.
7    pseudo_dir = './pseudopotentials/'
8    outdir = './tmp/'
9  /
10 &system
11   ibrav = 2
12   celldm(1) = 9.0
13   nat = 2
14   ntyp = 2
15   ecutwfc = 20.0
16 /
17 &electrons
18   diagonalization = 'david'
19   mixing_mode = 'plain'
20   mixing_beta = 0.7
21   conv_thr = 1.0d-8
22 /
23 ATOMIC_SPECIES
24   Ca 1.0  Ca_pseudo_dojov0.4.1.upf
25   O 1.0  O_pseudo_dojov0.4.1.upf
26 ATOMIC_POSITIONS alat
27   Ca 0.00 0.00 0.00
28   O 0.50 0.00 0.00
29 K_POINTS automatic
30   4 4 4 0 0 0
```



Input file for the pw.x code

In this lab we will study electronic properties of the **bulk** CaO – calcium oxide
The input file for this system looks like this (**CaO_primitive.scf.in**):

```
1  &control
2    calculation = 'scf' ←
3    restart_mode = 'from_scratch'
4    prefix = 'CaO'
5    tstress = .true.
6    tprnfor = .true.
7    pseudo_dir = './pseudopotentials/'
8    outdir = './tmp/'
9  /
10 &system
11   ibrav = 2
12   celldm(1) = 9.0
13   nat = 2
14   ntyp = 2
15   ecutwfc = 20.0
16 /
17 &electrons
18   diagonalization = 'david'
19   mixing_mode = 'plain'
20   mixing_beta = 0.7
21   conv_thr = 1.0d-8 ←
22 /
23 ATOMIC_SPECIES
24   Ca 1.0  Ca_pseudo_dojov0.4.1.upf
25   O 1.0  O_pseudo_dojov0.4.1.upf
26 ATOMIC_POSITIONS alat
27   Ca 0.00 0.00 0.00
28   O 0.50 0.00 0.00
29 K_POINTS automatic
30   4 4 4 0 0 0
```

Self-consistent field (**SCF**): iterative solution of the Kohn-Sham (KS) equations:

Input file for the pw.x code

In this lab we will study electronic properties of the **bulk** CaO – calcium oxide
The input file for this system looks like this (**CaO_primitive.scf.in**):

```
1  &control
2      calculation = 'scf'
3      restart_mode = 'from_scratch'
4      prefix = 'CaO'          ← The prefix for temporary files
5      tstress = .true.
6      tprnfor = .true.
7      pseudo_dir = './pseudopotentials/'
8      outdir = './tmp/'        ← The name and the path to the folder, where temporary files will
9
10 &system
11     ibrav = 2
12     celldm(1) = 9.0
13     nat = 2
14     ntyp = 2
15     ecutwfc = 20.0
16 /
17 &electrons
18     diagonalization = 'david'
19     mixing_mode = 'plain'
20     mixing_beta = 0.7
21     conv_thr = 1.0d-8
22 /
23 ATOMIC_SPECIES
24     Ca 1.0  Ca_pseudo_dojo_v0.4.1.upf
25     O  1.0  O_pseudo_dojo_v0.4.1.upf
26 ATOMIC_POSITIONS alat
27     Ca 0.00 0.00 0.00
28     O  0.50 0.00 0.00
29 K_POINTS automatic
30     4 4 4 0 0 0
```

The prefix for temporary files

The name and the path to the folder, where temporary files will be written

Input file for the pw.x code

In this lab we will study electronic properties of the **bulk** CaO – calcium oxide
The input file for this system looks like this (**CaO_primitive.scf.in**):

```
1  &control
2      calculation = 'scf'
3      restart_mode = 'from_scratch'
4      prefix = 'CaO'
5      tstress = .true. ←
6      tprnfor = .true. ←
7      pseudo_dir = './pseudopotentials/'
8      outdir = './tmp/'
9  /
10 &system
11     ibrav = 2
12     celldm(1) = 9.0
13     nat = 2
14     ntyp = 2
15     ecutwfc = 20.0
16  /
17 &electrons
18     diagonalization = 'david'
19     mixing_mode = 'plain'
20     mixing_beta = 0.7
21     conv_thr = 1.0d-8
22  /
23 ATOMIC_SPECIES
24     Ca 1.0  Ca_pseudo_dojo_v0.4.1.upf
25     O 1.0  O_pseudo_dojo_v0.4.1.upf
26 ATOMIC_POSITIONS alat
27     Ca 0.00 0.00 0.00
28     O 0.50 0.00 0.00
29 K_POINTS automatic
30     4 4 4 0 0 0
```

Calculation of the **stress tensor**

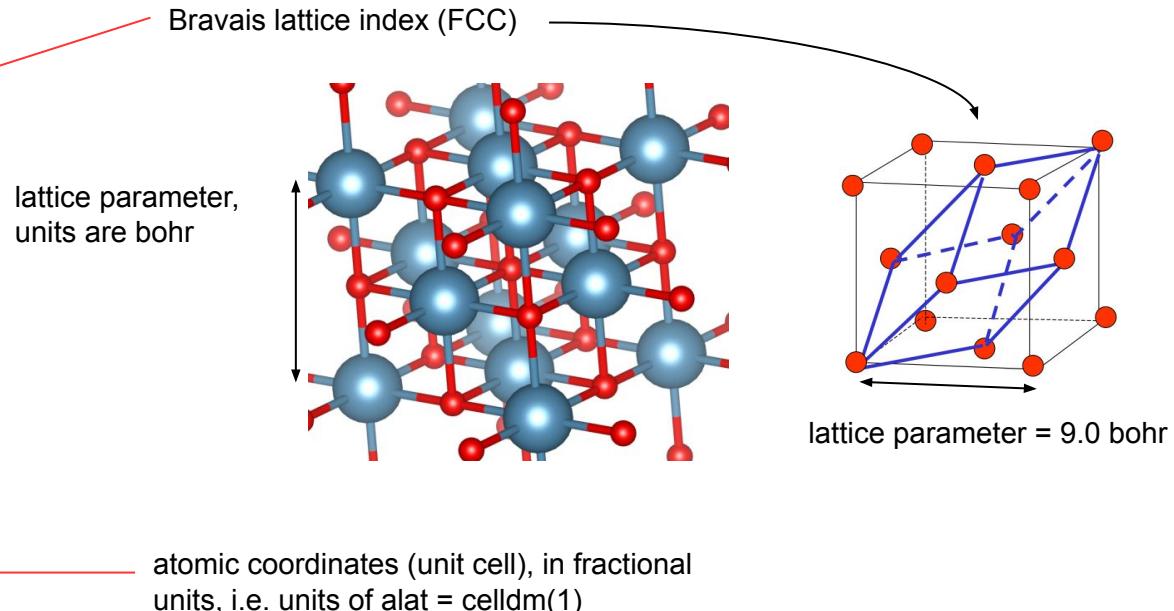
Calculation of the **forces**

Input file for the pw.x code

In this lab we will study electronic properties of the **bulk** CaO – calcium oxide
The input file for this system looks like this (**CaO_primitive.scf.in**):

```
1  &control
2    calculation = 'scf'
3    restart_mode = 'from_scratch'
4    prefix = 'CaO'
5    tstress = .true.
6    tprnfor = .true.
7    pseudo_dir = './pseudopotentials/' ← The path to the location of the pseudopotential
8    outdir = './tmp/'
9  /
10 &system
11   ibrav = 2
12   celldm(1) = 9.0
13   nat = 2
14   ntyp = 2
15   ecutwfc = 20.0
16 /
17 &electrons
18   diagonalization = 'david'
19   mixing_mode = 'plain'
20   mixing_beta = 0.7
21   conv_thr = 1.0d-8
22 /
23 ATOMIC_SPECIES
24   Ca 1.0 Ca_pseudo_doj0_v0.4.1.upf ← Pseudopotential file names
25   O 1.0 O_pseudo_doj0_v0.4.1.upf
26 ATOMIC_POSITIONS alat
27   Ca 0.00 0.00 0.00
28   O 0.50 0.00 0.00
29 K_POINTS automatic
30   4 4 4 0 0 0
```

The path to the location of the pseudopotential

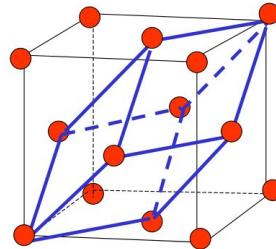


Pseudopotential file names

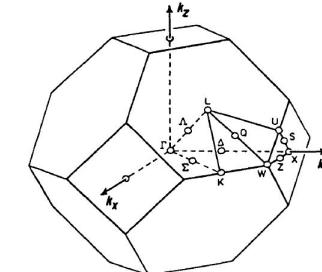
Input file for the pw.x code

In this lab we will study electronic properties of the **bulk** CaO – calcium oxide
The input file for this system looks like this (**CaO_primitive.scf.in**):

```
1  &control
2    calculation = 'scf'
3    restart_mode = 'from_scratch'
4    prefix = 'CaO'
5    tstress = .true.
6    tprnfor = .true.
7    pseudo_dir = './pseudopotentials/'
8    outdir = './tmp/'
9  /
10 &system
11   ibrav = 2
12   celldm(1) = 9.0
13   nat = 2
14   ntyp = 2
15   ecutwfc = 20.0
16 /
17 &electrons
18   diagonalization = 'david'
19   mixing_mode = 'plain'
20   mixing_beta = 0.7
21   conv_thr = 1.0d-8
22 /
23 ATOMIC_SPECIES
24   Ca 1.0 Ca_pseudo_dojov0.4.1.upf
25   O 1.0 O_pseudo_dojov0.4.1.upf
26 ATOMIC_POSITIONS alat
27   Ca 0.00 0.00 0.00
28   O 0.50 0.00 0.00
29 K_POINTS automatic
30   4 4 4 0 0 0
```

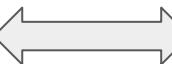


Input file for the pw.x code


In this lab we will study electronic properties of the **bulk CaO** – calcium oxide
The input file for this system looks like this (**CaO_primitive.scf.in**):

```
1  &control
2    calculation = 'scf'
3    restart_mode = 'from_scratch'
4    prefix = 'CaO'
5    tstress = .true.
6    tprnfor = .true.
7    pseudo_dir = './pseudopotentials/'
8    outdir = './tmp/'
9  /
10 &system
11   ibrav = 2
12   celldm(1) = 9.0
13   nat = 2
14   ntyp = 2
15   ecutwfc = 20.0
16 /
17 &electrons
18   diagonalization = 'david'
19   mixing_mode = 'plain'
20   mixing_beta = 0.7
21   conv_thr = 1.0d-8
22 /
23 ATOMIC_SPECIES
24   Ca 1.0  Ca_pseudo_dojov0.4.1.upf
25   O 1.0  O_pseudo_dojov0.4.1.upf
26 ATOMIC_POSITIONS alat
27   Ca 0.00 0.00 0.00
28   O 0.50 0.00 0.00
29   K_POINTS automatic
30     4 4 4 0 0 0
```

Real space
(unit cell)


Reciprocal space
(first Brillouin Zone)

k points sampling of the Brillouin zone using the Monkhorst-Pack scheme

- 4x4x4 uniform grid
- 0 0 0 means that the grid is not shifted with respect to the center of the BZ

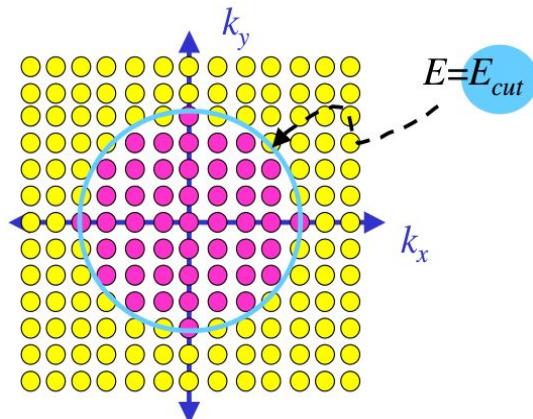
Symmetries

Irreducible wedge of the BZ

Input file for the pw.x code

In this lab we will study electronic properties of the **bulk CaO** – calcium oxide
The input file for this system looks like this (**CaO_primitive.scf.in**):

```
1  &control
2    calculation = 'scf'
3    restart_mode = 'from_scratch'
4    prefix = 'CaO'
5    tstress = .true.
6    tprnfor = .true.
7    pseudo_dir = './pseudopotentials/'
8    outdir = './tmp/'
9  /
10 &system
11   ibrav = 2
12   celldm(1) = 9.0
13   nat = 2
14   ntyp = 2
15   ecutwfc = 20.0
16  /
17 &electrons
18   diagonalization = 'david'
19   mixing_mode = 'plain'
20   mixing_beta = 0.7
21   conv_thr = 1.0d-8
22  /
23 ATOMIC_SPECIES
24   Ca 1.0  Ca_pseudo_doj0_v0.4.1.upf
25   O 1.0  O_pseudo_doj0_v0.4.1.upf
26 ATOMIC_POSITIONS alat
27   Ca 0.00 0.00 0.00
28   O 0.50 0.00 0.00
29 K_POINTS automatic
30   4 4 4 0 0 0
```

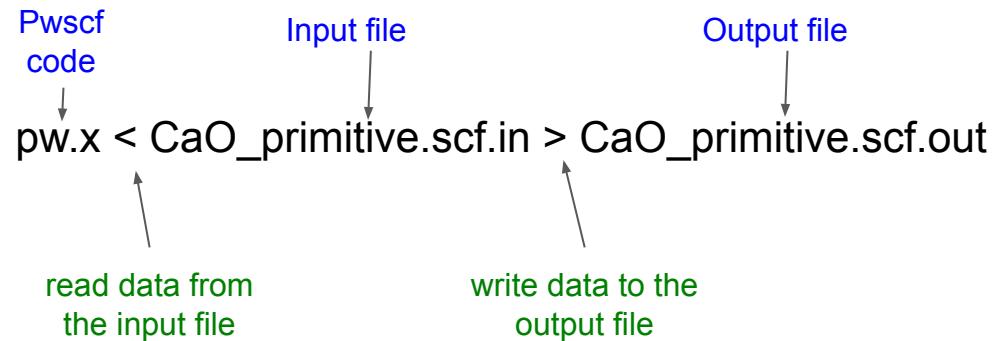

$$\psi_{n,\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{G}} c_{n,\mathbf{k}+\mathbf{G}} e^{i(\mathbf{k}+\mathbf{G}) \cdot \mathbf{r}}$$

KS wavefunctions are expanded in a **plane-wave basis set up to a cutoff G_{cut}**

Kinetic energy cutoff E_{cut}
units are Ry

E_{cut} defines G_{cut} :

$$\frac{\hbar^2}{2m} |\mathbf{k} + \mathbf{G}|^2 \leq E_{cut}$$



Outline

1. Introduction to the Quantum ESPRESSO project
2. Description of the input file for the pw.x code
3. Performing the calculation

Performing the calculation

To perform a single pw.x calculation, it is necessary to execute the following command:

